A New N,P-Ligand with Achiral *gem*-Dimethyloxazoline for Palladium(II)-Catalyzed Cyclization of 1,6-Enynes: Transition State Probe for the N/C trans Mode in Mizoroki-Heck-Type C-C Bond Formation

Manabu Hatano, [a] Masahiro Yamanaka, [a] and Koichi Mikami*[a]

Keywords: Coordination modes / Cyclization / Enynes / N,P ligands / Palladium

A highly effective C₁-symmetric gem-dimethyl N,P-ligand has been developed for enantioselective palladium(II)-catalyzed carbocyclization of 1,6-enynes, in which the N/C trans mode is established for the first time in the "Mizoroki-Hecktype" transition state by virtue of the C₁-symmetric N₁P-li-

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003)

Introduction

Transition metal-catalyzed ene-type carbocyclizations of 1.6-envnes[1-9] are useful methods, particularly for fivemembered rings. However, previous examples of enantioselective catalysis with chiral metal complexes are limited,[10-17] despite its synthetic potential to afford not only carbocycles but also heterocycles. Here we report efficient catalysis by chiral palladium(II) complexes of a new N,P-ligand bearing an achiral oxazoline with sterically demanding gem-dialkyl groups. The C_1 -symmetric N,P-ligand with the achiral oxazoline provides deep insight into the key transition states for C-C bond formation.

Results and Discussion

Because of the limitations of P,P-ligands such as BINAP and SEGPHOS with ene substrates (vide infra), [6] we investigated bidentate C_1 -symmetric N,P-ligands for a variety of substrates under polar conditions ([(MeCN)₄Pd](BF₄)₂/ HCOOH/DMSO). In order to achieve high enantioselectivity, NP-ligands^[18-33] 7a and 7b, containing chiral tBu oxazoline units, were first prepared (Table 1). N,P-ligands 7a and 7b gave enantioselectivities (81–93% ee, Entries 4, 5, 7, 8) higher than those obtained with the C_2 -symmetric P,Pligand Xyl-SEGPHOS (9)[17,34] (6-61% ee: vide supra) (Entries 10, 11). Interestingly enough, the same (S)-(+)-products were obtained from all substrates (1, 3, and 5) on use

Encouraged by these interesting results, we examined Xray analyses of dichloropalladium(II) complexes 10a, 10b with N,P-ligands of 7a and 7b.[35,36] The ORTEP drawings are shown in Figure 1 (top and bottom).^[37]

A general representation of a PdII complex, according to the X-ray analyses of these diastereomeric PdII complexes 10a and 10b, is shown in Figure 2, divided into four quadrants (from I to IV). In sharp contrast to PdII complexes with P,P-ligands, such as BINAP,[38] there is essentially no steric difference in axial and equatorial phenyl groups located in quadrants II and III, respectively, due to: (1) a small difference in the N-Pd-P-Ph torsion angle, and (2) similar direction of phenyl ring such as face and edge rotating on the C-P bond (Figure 1, top and bottom). Furthermore, the substituents R or R' are located in quadrant IV. This is caused by a strong twist of the oxazoline from Pd square planar. The P-Pd-N-C(-O) torsion angles in 10a and 10b are 72° and 79°, respectively.

On the basis of these X-ray analyses, a more effective N,P-ligand 11, doubly substituted with methyl groups, was developed (Figure 3). The advantage of the C_1 -symmetric Pd^{II} complex with the (aS)-N,P-ligand 11 could be predicted in view of steric and electronic features. Two possible (N/C trans and cis) modes in the four-coordinate transition states^[39,40] (TS1 and TS2) would afford the (S)-(+)-products. In the N/C trans mode (TS1), high enantioselectivities should be achieved by use of N,P-ligand 11 because of significant steric repulsion between the terminal Me groups of the substrate (1, 3, and 5) and the dimethyl substituents of

of these two epimeric N,P-ligands 7a and 7b. In contrast, N,P-ligand 8, with no alkyl substituent in the oxazoline unit, showed poor enantiomeric excesses (35-50% ee, Entries 3, 6, 9). These results imply that the center of chirality (R or S) at the 4-position of the oxazolines is not important and that the presence of a sterically demanding substituent is necessary.

Department of Applied Chemistry, Tokyo Institute of Technology, Tokyo 152–8552, Japan Fax: (internat.) +81-3-57342776

E-mail: kmikami@o.cc.titech.ac.jp

Supporting information for this article is available on the WWW under http://www.eurjoc.org or from the author.

Table 1. Enantioselective carbocyclization of 1,6-enynes catalyzed by Pd^{II} complexes with (aS)-P,P- and N,P-ligands

Entry ^[a]	Substrate	N,P-ligand	Reaction time (h)	Yield (%)	ee (%) (config. ^[b])
1 ^[c]	1	7a	12	>99	78 (S)-(+)
2 ^[c]	1	7b	24	92	87(S)-(+)
3 ^[c]	1	8	18	89	41 (S)-(+)
4	3	7a	3	>99	93 (S)-(+)
5	3	7b	3	>99	92 (S)-(+)
6	3	8	3	>99	35 (S)-(+)
7	5	7a	24	42	81 (S) - $(+)$
8	5	7b	9	>99	86 (S)-(+)
9 ^[d]	5	8	24	9	50 (S)-(+)
10	3	9	3	>99	61 (<i>R</i>)-(-)
11	5	9	3	>99	6 (<i>R</i>)-(-)

[[]a] Reactions were carried out in thoroughly degassed solvents at 80 °C with 5 mol % of [(MeCN)₄Pd](BF₄)₂, 10 mol % of chiral ligand and 1 equiv. of HCOOH unless otherwise noted. ^[b] For **4** and **6**, by analogy. ^[c] 0.2 equiv. of HCOOH were used. ^[d] Temperature was 100 °C.

the oxazoline unit in quadrant IV.^[41–43] In contrast, lower enantioselectivity should be observed in the *N/C cis* mode (**TS2**), since the terminal alkenyl Me group should not be able to differentiate fully between the two Ph groups in quadrants II and III. The (*S*)-(+)-enantiomers would be obtained highly enantioselectively through Mizoroki–Heck-type C–C bond formation^[44–47] and β -H elimination via **TS1**, by effective differentiation with the dimethyloxazoline (quadrant I vs. IV).

The preference for the N/C trans mode is clearly illustrated by ONIOM calculations.[48-51] Steric factors dominate the enantioselectivity of N,P-ligand 11, while electronic factors produce the N/C trans mode. Details of the 3D geometries of CP1 and CP2 (X = O, an aldehyde group wasused instead of an ester group as the models of TS1 and TS2) were optimized by use of the ONIOM (B3LYP/ 631SDD: HF/321LAN) approach (Figure 3).^[52] The N/C trans mode of CP1 is 6.3 kcal/mol lower in energy than the N/C cis mode of CP2. This indicates that the C-C bond formation proceeds through the N/C trans mode transition state (TS1). The relative energy difference between CP1 and CP2 is due to the trans influence of the electronically asymmetric N,P-ligand, which affects the Pd-C1 and Pd-C2 (and Pd-C3) lengths. Since the P-coordinating unit acts as an electron acceptor and the N-coordinating unit as a donor, [41] π-coordination of the olefinic carbons C2-C3 trans to the phosphane in CP1 is electronically favored. The

Pd-C1 bond in **CP1** (2.02 Å) is stronger than that in **CP2** (2.08 Å) because of the *trans* influence of the *N*-coordinating unit. In contrast, the π -coordination of C2-C3 *trans* to the *N*-coordinating unit as a donor in **CP2** is electronically mismatched, and so the coordination structure around the Pd center in **CP2** is distorted in comparison with the square planar structure in **CP1**. The electronic influence can be combined with the steric differentiation in the oxazoline to form **TS1** in the *N/C trans* mode, which can achieve the high enantioselectivity.

Therefore, our axially chiral N,P-ligand 11, without any center of chirality in the oxazoline moiety, was prepared by a modified method involving the use of a catalytic amount of sodium with the corresponding methoxycarbonyl and 2amino-2-methyl-1-propanol (see the supporting information, for supporting information see also the footnote on the first page of this article). The synthesis of the achiral gem-dimethyloxazoline (11) was otherwise unsuccessful, giving quite low yields. Our gem-dimethyl N,P-ligand 11 prepared in this way gave the carbocyclization products (2, 4, and 6) with high enantiomeric excesses and in almost quantitative yields (up to 95% ee, 99% yield) (Table 2, Entries 1-3). The key to the success achieved in increasing the enantioselectivity in carbocyclization of amide 5 in particular, from 6% ee by Xyl-SEGPHOS 9 to 95% ee by 11, is the employment of the sterically demanding gem-dimethyl achiral oxazoline.

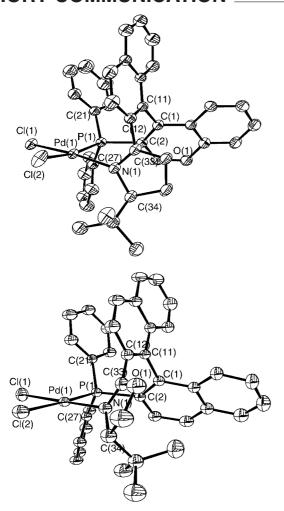


Figure 1. ORTEP drawings of chiral dichloropalladium(II) complexes with N,P-ligands; (top) [(aS,R)-7a]PdCl₂ complex 10a; (bottom) [(aS,S)-7b]PdCl₂ complex 10b

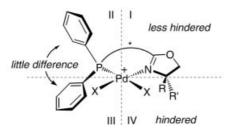
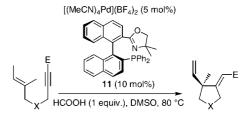


Figure 2. Drawing of PdII complexes with (aS)-N,P-ligands


Conclusion

In summary, we have developed the highly effective gemdimethyl N,P-ligand for enantioselective palladium(II)-catalyzed ene-type carbocyclization of 1,6-enynes to produce not only carbocycles but also heterocycles. The N/C trans mode has thus been established for the asymmetric catalytic Mizoroki-Heck-type C-C bond formation by virtue of the C_1 -symmetric N,P-ligand.

Figure 3. Transition states for C-C bond formation, producing (S)-(+)-products, in the presence of (aS)-N,P-ligand 11; three-dimensional structures of CP1 and CP2 optimized by use of ONIOM (B3LYP/631SDD:HF/321LAN)

Table 2. Asymmetric carbocyclization of 1,6-enynes catalyzed by Pd^{II} complexes with gem-dimethyl N,P-ligand 11

Entry^[a] Substrate Reaction time (h) Yield (%) ee (%) (config.)

1 ^[b]	1	24	87	88 (S)-(+)
2	3	3	>99	93 (S) - $(+)$
3	5	3	>99	95 (S) - $(+)$

[a] Reactions were carried out at 80 °C with 10 mol % of N,P-ligand 11, 5 mol % of [(MeCN)₄Pd](BF₄)₂ and 1 equiv. of HCOOH unless otherwise noted. [b] 0.2 equiv. of HCOOH were used.

Acknowledgments

We are grateful to Prof. Masahiro Terada in Tohoku University for discussions. Generous allotment of computational time from the Institute for Molecular Science, Okazaki is also very gratefully acknowledged.

^[1] B. M. Trost, M. J. Krische, Synlett 1998, 1-16.

^[2] B. M. Trost, Acc. Chem. Res. 1990, 23, 34-42.

^[3] B. M. Trost, Chem. Eur. J. 1998, 4, 2405-2412.

^[4] C. Aubert, O. Buisine, M. Malacria, Chem. Rev. 2002, 102, 813 - 834.

SHORT COMMUNICATION

- [5] J. Tsuji, Palladium Reagents and Catalysts, Wiley, Chichester, 1995
- [6] W. Oppolzer, V. Snieckus, Angew. Chem. 1978, 90, 506-516; Angew. Chem. Int. Ed. Engl. 1978, 17, 476-486.
- [7] W. Oppolzer, Angew. Chem. 1989, 101, 39-53; Angew. Chem. Int. Ed. Engl. 1989, 28, 38-52.
- [8] K. Mikami, M. Shimizu, Chem. Rev. 1992, 92, 1021-1050.
- [9] D. F. Taber, Intramolecular Diels-Alder and Alder-Ene Reactions, Springer, Berlin, 1984.
- [10] B. M. Trost, D. C. Lee, F. Rise, Tetrahedron Lett. 1989, 30, 651-654.
- [11] B. M. Trost, B. A. Czeskis, Tetrahedron Lett. 1994, 35, 211–214.
- [12] A. Goeke, M. Sawamura, R. Kuwano, Y. Ito, Angew. Chem. 1996, 108, 686–687; Angew. Chem. Int. Ed. Engl. 1996, 35, 662–663.
- [13] Q. Zhang, X. Lu, J. Am. Chem. Soc. 2000, 122, 7604-7605.
- [14] Q. Zhang, X. Lu, X. Han, J. Org. Chem. 2001, 66, 7676-7684.
- [15] A. Lei, M. He, X. Zhang, J. Am. Chem. Soc. 2002, 124, 8198-8199.
- [16] P. Cao, X. Zhang, Angew. Chem. Int. Ed. 2000, 39, 4104-4106.
- [17] We have already reported that Pd^{II}-catalyzed ene-type cyclization proceeds quantitatively with high enantioselectivity with the use of C₂-symmetric P,P-ligands such as BINAP and SEGPHOS: M. Hatano, M. Terada, K. Mikami, *Angew. Chem. Int. Ed.* 2001, 40, 249–253.
- [18] M. Ogasawara, K. Yoshida, T. Hayashi, *Heterocycles* 2000, 52, 195-201.
- [19] M. Ogasawara, K. Yoshida, H. Kamei, K. Kato, Y. Uozumi, T. Hayashi, *Tetrahedron: Asymmetry* 1998, 9, 1779-1787.
- [20] W. Zhang, Y. Yoneda, T. Kida, Y. Nakatsuji, I. Ikeda, *Tetrahedron: Asymmetry* 1998, 9, 3371–3380.
- [21] Y. Imai, W. Zhang, T. Kida, Y. Nakatsuji, I. Ikeda, *Tetrahedron Lett.* 1998, 39, 4343-4346.
- ^[22] K. Selvakumar, M. Valentini, M. Wörle, P. S. Pregosin, A. Albinati, *Organometallics* **1999**, *18*, 1207–1215.
- ^[23] K. Selvakumar, M. Valentini, P. S. Pregosin, A. Albinati, F. Eisenträger, *Organometallics* **2000**, *19*, 1299–1307.
- [24] P. S. Pregosin, A. Albinati, Organometallics 2002, 21, 3033-3041.
- [25] P. Matt, A. Pfaltz, Angew. Chem. Int. Ed. Engl. 1993, 32, 566-568.
- [26] R. Prétôt, A. Pfaltz, Angew. Chem. Int. Ed. 1998, 37, 323-325.
- [27] A. Lightfoot, P. Schnider, A. Pfaltz, Angew. Chem. Int. Ed. 1998, 37, 2897–2899.
- ^[28] S. Kainz, A. Brinkmann, W. Leitner, A. Pfaltz, *J. Am. Chem. Soc.* **1999**, *121*, 6421–6429.
- [29] J. Blankenstein, A. Pfaltz, Angew. Chem. Int. Ed. 2001, 40, 4445-4447.
- [30] A. Pfaltz, CHIMIA 2001, 55, 708-714.
- [31] J. Sprinz, M. Kiefer, G. Helmchen, Tetrahedron Lett. 1994, 35, 1523-1526.
- [32] M. Kollmar, B. Goldfuss, M. Reggelin, F. Rominger, G. Helmchen, *Chem. Eur. J.* 2001, 7, 4913–4927.
- [33] W. Deng, S. You, X. Hou, L. Dai, Y. Yu, W. Xia, J. Sun, J. Am. Chem. Soc. 2001, 123, 6508-6519.
- [34] SEGPHOS = (4,4'-bis-1,3-benzodioxole)-5,5'-diylbis(diphenylphosphane): T. Saito, T. Yokozawa, T. Ishizaki, T. Moroi, N.

- Sayo, T. Miura, H. Kumobayashi, *Adv. Synth. Catal.* **2001**, *343*, 264–267. EP 850945A **1998**, US 5872273 **1999**.
- [35] Crystal data for **10a** (dichloro[(*R*,a*S*)-2-[4-(*tert*-butyl)oxazol-2-yl]-2′-diphenylphosphanyl-1,1′-binaphthyl]palladium) in X-ray analysis: formula C₃₉H₃₄Cl₂NOPPd·CH₂Cl₂, monoclinic, space group *P*2₁/*c* (#14), *a* = 10.0013(15) Å, *b* = 16.8353(17) Å, *c* = 11.1970(11) Å, β = 103.034(10) °, *V* = 1836.7(4) Å³, *Z* = 2, and *D* = 1.340 g cm⁻³. *R* = 0.0293 and *Rw* = 0.0798. CCDC-179394 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: (internat.) +44–1223/336–033; E-mail: deposit@ccdc.cam.ac.uk].
- [36] Crystal data for **10b** (dichloro[(S,aS)-2-[4-(tert-butyl)oxazol-2-yl]-2'-diphenylphosphanyl-1,1'-binaphthyl]palladium) in X-ray analysis: formula $C_{39}H_{34}Cl_2NOPPd\cdot CH_2Cl_2$, orthorhombic, space group $P2_12_12_1$ (#19), a=14.973(3) Å, b=19.989(4) Å, c=12.208(3) Å, V=3653.8(14) ų, Z=4, and D=1.347 g cm⁻³. R=0.0255 and Rw=0.0676. CCDC-179395 contains the supplementary crystallographic data for this paper.
- [37] Selected and all crystallographic data are summarized in supporting information (hydrogens are omitted for clarity).
- [38] F. Ozawa, A. Kubo, Y. Matsumoto, T. Hayashi, Organometallics 1993, 12, 4188-4196.
- [39] L. E. Overman, D. J. Poon, Angew. Chem. 1997, 109, 536-538; Angew. Chem. Int. Ed. Engl. 1997, 36, 518-521.
- [40] A. Ashimori, B. Bachand, L. E. Overman, D. J. Poon, J. Am. Chem. Soc. 1998, 120, 6477-6487.
- ^[41] Steric and electronic factors have been debated in η^3 -allyl palladium complexes with N,P-ligands: G. Helmchen, A. Pfaltz, *Acc. Chem. Res.* **2000**, *33*, 336–346.
- [42] A. C. Humphries, A. Pfaltz, Stimulating Concepts in Chemistry, F. Vogtle, J. F. Stoddart, M. Shibasaki, Eds., Wiley-VCH, Weinheim, 2000, pp. 89-103.
- [43] A. Pfaltz, M. Lauten, Comprehensive Asymmetric Catalysis, Vol. II, (Eds.: E. N. Jacobsen, A. Pfaltz, H. Yamamoto), Springer, Berlin, 1999, pp. 883–886.
- [44] F. Ozawa, A. Kubo, T. Hayashi, J. Am. Chem. Soc. 1991, 113, 1417–1419.
- [45] T. Ohshima, K. Kagechika, M. Adachi, M. Sodeoka, M. Shibasaki, J. Am. Chem. Soc. 1996, 118, 7108-7116.
- [46] L. Ripa, A. Hallberg, J. Org. Chem. 1997, 62, 595-602.
- [47] A. Ashimori, B. Bachand, M. A. Calter, S. P. Govek, L. E. Overman, D. J. Poon, J. Am. Chem. Soc. 1998, 120, 6488-6499.
- [48] F. Maseras, K. Morokuma, J. Comp. Chem. 1995, 16, 1170-1179.
- [49] M. Svensson, S. Humbel, R. D. J. Froese, T. Matsubara, S. Sieber, K. Morokuma, J. Phys. Chem. 1996, 100, 19357–19363.
- [50] S. Dapprich, I. Komaromi, K. S. Byun, K. Morokuma, M. J. Frisch, J. Mol. Str.: THEOCHEM 1999, 461–462, 1–21.
- [51] T. Vreven, K. Morokuma, J. Comp. Chem. 2000, 21, 1419-1432.
- [52] The basis sets denote as 631SDD and 321LAN consists of Stuttgart and LANL2DZ effective core potentials for Pd atoms and 6-31G(d) and 3-21G basis sets for the rest, respectively.

 Received March 25, 2003